【J. Phys. Chem. Lett.】2016, 7, 75-84

Miyauchi, M.; Irie, H.; Liu, M.; Qiu, X.; Yu, H; Sunada, K.; Hashimoto, K.

doi:10.1021/acs.jpclett.5b02041

【ABSTRACT】

Photocatalytic degradation of organic compounds requires photoexcited holes with strong oxidative power in the valence band (VB) of semiconductors. Although numerous types of doped semiconductors, such as nitrogen-doped TiO2, have been studied as visible-light-sensitive photocatalysts, the quantum yields of these materials were very low because of the limited oxidation power of holes in the nitrogen level above the VB. Recently, we developed visible-light-sensitive Cu(II) and Fe(III) nanocluster-grafted TiO2 using a facile impregnation method and demonstrated that visible-light absorption occurs at the interface between the nanoclusters and TiO2, as electrons in the VB of TiO2 are excited to the nanoclusters under visible-light irradiation. In addition, photogenerated holes in the VB of TiO2 efficiently oxidize organic contaminants, and the excited electrons that accumulate in nanoclusters facilitate the multielectron reduction of oxygen. Notably, Cu(II) and Fe(III) nanocluster-grafted TiO2photocatalyst has the highest quantum yield among reported photocatalysts and has antiviral, self-cleaning, and air purification properties under illumination by indoor light fixtures equipped with white fluorescent bulbs or white light-emitting diodes.